Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334550

RESUMO

A biodegradable amorphous carbonated calcium phosphate (caCP)-incorporated polycaprolactone (PCL) composite layer was successfully deposited by a spin coater. In this specific coating, the PCL acts as a bioadhesive, since it provides a better adherence of the coatings to the substrate compared to powder coatings. The caCP-PCL coatings were deposited and formed thin layers on the surface of a Si3N4-3 wt% MWCNT (multiwalled carbon nanotube) substrate, which is an emerging type of implant material in the biomedical field. The composite coatings were examined regarding their morphology, structure and biological performance. The biocompatibility of the samples was tested in vitro with MC3T3-E1 preosteoblast cells. Owing to the caCP-PCL thin layer, the cell viability values were considerably increased compared to the substrate material. The ALP and LDH tests showed numerous living cells on the investrigated coatings. The morphology of the MC3T3-E1 cells was examined by fluorescent staining (calcein and DAPI) and scanning electron microscopy, both of which revealed a well-spread, adhered and confluent monolayer of cells. All performed biocompatibility tests were positive and indicated the applicability of the deposited thin composite layers as possible candidates for orthopaedic implants for an extended period.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630871

RESUMO

Bioactive glasses (BGs) are especially useful materials in soft and bone tissue engineering and even in dentistry. They can be the solution to many medical problems, and they have a huge role in the healing processes of bone fractures. Interestingly, they can also promote skin regeneration and wound healing. Bioactive glasses are able to attach to the bone tissues and form an apatite layer which further initiates the biomineralization process. The formed intermediate apatite layer makes a connection between the hard tissue and the bioactive glass material which results in faster healing without any complications or side effects. This review paper summarizes the most recent advancement in the preparation of diverse types of BGs, such as silicate-, borate- and phosphate-based bioactive glasses. We discuss their physical, chemical, and mechanical properties detailing how they affect their biological performances. In order to get a deeper insight into the state-of-the-art in this area, we also consider their medical applications, such as bone regeneration, wound care, and dental/bone implant coatings.

3.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555378

RESUMO

Nanocrystalline calcium phosphate (CP) bioceramic coatings and their combination with biopolymers are innovative types of resorbable coatings for load-bearing implants that can promote the integration of metallic implants into human bodies. The nanocrystalline, amorphous CP particles are an advantageous form of the various calcium phosphate phases since they have a faster dissolution rate than that of crystalline hydroxyapatite. Owing to the biomineral additions (Mg, Zn, Sr) in optimized concentrations, the base CP particles became more similar to the mineral phase in human bones (dCP). The effect of biomineral addition into the CaP phases was thoroughly studied. The results showed that the shape, morphology, and amorphous characteristic slightly changed in the case of biomineral addition in low concentrations. The optimized dCP particles were then incorporated into a chosen polycaprolactone (PCL) biopolymer matrix. Very thin, non-continuous, rough layers were formed on the surface of implant substrates via the spin coating method. The SEM elemental mapping proved the perfect incorporation and distribution of dCP particles into the polymer matrix. The bioresorption rate of thin films was followed by corrosion measurements over a long period of time. The corrosion results indicated a faster dissolution rate for the dCP-PCL composite compared to the dCP and CP powder layers.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis , Humanos , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície , Fosfatos de Cálcio/química , Durapatita/química , Biopolímeros
4.
Nanomaterials (Basel) ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34947543

RESUMO

Calcium phosphate (CaP)-based ceramic-biopolymer composites can be regarded as innovative bioresorbable coatings for load-bearing implants that can promote the osseointegration process. The carbonated hydroxyapatite (cHAp) phase is the most suitable CaP form, since it has the highest similarity to the mineral phase in human bones. In this paper, we investigated the effect of wet chemical preparation parameters on the formation of different CaP phases and compared their morphological and structural characteristics. The results revealed that the shape and crystallinity of CaP particles were strongly dependent on the post-treatment methods, such as heat or alkaline treatment of as-precipitated powders. In the next step, the optimised cHAp particles have been embedded into two types of biopolymers, such as polyvinyl pyrrolidone (PVP) and cellulose acetate (CA). The pure polymer fibres and the cHAp-biopolymer composites were produced using a novel electrospinning technique. The SEM images showed the differences between the morphology and network of CA and PVP fibres as well as proved the successful attachment of cHAp particles. In both cases, the fibres were partially covered with cHAp clusters. The SEM measurements on samples after one week of immersion in PBS solution evidenced the biodegradability of the cHAp-biopolymer composites.

5.
Materials (Basel) ; 14(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683647

RESUMO

The aim of this study is to present a novel, lower sintering temperature preparation, processing, structural, mechanical, and tribological testing of the AlN-Al2O3 ceramics. The precursor powder of AlN was subjected to oxidation in ambient environment at 900 °C for 3, 10, and 20 h, respectively. These oxidized powders were characterized by SEM and XRD to reveal their morphology, phase, and crystal structure. The SEM results showed coarse powder particles and the presence of aluminum oxide (Al2O3) phase at the surface of aluminum nitride (AlN). The XRD analysis has shown increasing aluminum-oxy-nitride conversion of aluminum nitride as the holding time of oxidation increased. The highest percentage of conversion of AlN powder to AlN-Al2O3 was observed after 10 h. Simultaneously the powders were compacted and sintered using the hot isostatic pressing (HIP) under inert environment (N2 gas) at 1700 °C, 20 MPa for 5 h. This led to the compaction and increase in density of the final samples. Mechanical tests, such as bending test and tribology tests, were carried out on the samples. The mechanical properties of the samples were observed to improve in the oxidized samples compared to the precursor AlN. Moreover, applying longer oxidation time, the mechanical properties of the sintered samples enhanced significantly. Optimum qualitative (microstructure, oxide percentage) and quantitative (tribology, hardness, and bending tests) properties were observed in samples with 10-h oxidation time.

6.
Materials (Basel) ; 13(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096807

RESUMO

Ionic substituted calcium phosphate coatings (iCP) have been prepared by the electrochemical pulse current deposition technique with an alternate pulse on and off time of 5 ms onto a titanium alloy substrate. The elemental distribution and morphology of the deposited layers have been extensively studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM). The crystallinity and phase structure of iCPs have been investigated by X-ray diffraction (XRD). The corrosion characteristics and biodegradability of coatings have been determined by electrochemical measurements, recording potentiodynamic curves in a physiological solution over a long-term immersion period. The cell viability tests confirmed that the iCP coating was biocompatible, while the corrosion tests proved its biodegradable characteristic. In our paper, we compare the morphological, chemical, and biological characteristics of silver and zinc substituted calcium phosphate layers deposited by the electrochemical method.

7.
Mater Sci Eng C Mater Biol Appl ; 95: 381-388, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573262

RESUMO

Multi-ions doped bioactive calcium phosphate (dCaP) layers were developed by pulse current deposition onto surgical grade titanium alloy material (Ti6Al4V). The coatings were electrodeposited from base electrolyte containing adequate amounts of calcium nitrate and ammonium dihydrogen phosphate at 70 °C. After electrodeposition, the pure CaP layers were doped with different ions that possess bioactive and antimicrobial properties, such as Zn2+, Mg2+, Sr2+ and Ag+ ions. The morphology and structure of coatings were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX) as well as XRD and FT-IR measurements. The results revealed the pulse current deposited and surface post-treated CaP layer to be mainly in hydroxyapatite phase. The corrosion properties of bioceramic coatings were assessed in conventional simulated body fluid (SBF) in a three electrode open cell by using potentiodynamic polarization measurements over two weeks period. The electrochemical results revealed that the pure calcium phosphate (CaP) coated implant material and the bare implant possess the highest resistivity to corrosion, while the modified calcium phosphate coating showed lower corrosion resistance by at least one order of magnitude. The cell viability measurements showed that the electrochemically deposited CaP layer was biocompatible.


Assuntos
Fosfatos de Cálcio/química , Durapatita/química , Galvanoplastia , Isoniazida/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Humanos , Isoniazida/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...